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Numerical results are presented for the approach of a rigid sphere normal to a 
deformable fluid-fluid interface in the velocity range for which inertial effects may 
be neglected. Both the case of a sphere moving with constant velocity, and that of 
a sphere moving under the action of a constant non-hydrodynamic body force are 
considered for several values of the viscosity ratio, density difference and interfacial 
tension between the two fluids. Two distinct modes of interface deformation are 
demonstrated : a film drainage mode in which fluid drains away in front of the sphere 
leaving an ever-thinning film, and a tailing mode where the sphere passes several radii 
beyond the plane of the initially undeformed interface, while remaining encapsulated 
by the original surrounding fluid which is connected with its main body by a thin 
thread-like tail behind the sphere. We consider the influence of the viscosity ratio, 
density difference, interfacial tension and starting position of the sphere in deter- 
mining which of these two modes of deformation will occur. 

1. Introduction 
When a fluid droplet or rigid spherical particle moves in one fluid bounded either 

above or below by a second fluid, the presence of the fluid-fluid interface will affect 
the motion of the body, and the interface will in turn be deformed by the disturbance 
flow caused by the sphere or drop. If the particle or drop is moving towards the 
interface, the body may pass through the interface into the second fluid. Such a 
process is called coalescence when the body is a drop of the second fluid and 
breakthrough for a rigid particle or a drop of some third fluid. 

The generalized coalescence or breakthrough problem is of interest in many 
important processes. The stability of a suspension of liquid drops depends primarily 
on the ability of the drops to resist coalescence. The final separation stages of a 
liquid-liquid extraction process involve droplets of one liquid, A, rising towards a 
stationary interface through another liquid, B, and B settling through A (figure 1). 
The capture of particles by a fibrous mat collector onto which a layer of liquid has 
condensed is an example of a relevant breakthrough process. A logical problem for 
initial investigation of the complicated phenomena inherent in these applications is 
a single rigid sphere moving through a quiescent fluid near a deformable, initially 
plane interface. Indeed, this problem has already been the subject of intensive study 
and is commonly identified as ‘the’ coalescence problem. With one exception, 
however, (Maru, Wasan & Kintner 197 1 ), these earlier investigators have assumed 
that the passage of a particle or drop from one fluid to the other always occurs via 
the film drainage configuration, depicted in figure 2, with ‘film drainage’ as the 
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FIQURE 1. Schematic sketch of the final stages of phase separation following liquid-liquid 
extraction between two immiscible liquids. 
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FIQURE 2. Film-drainage configuration for a sphere at a deformable interface. 

slowest step in an overall process in which each step can (it is assumed) be studied 
independently of the others. 

In  general, however, the prior history of motion affects the instantaneous behaviour 
of the body and interface so that the total process must be considered from the start 
and not as individual, independent steps. Indeed, we shall see that consideration of 
the full initial-value problem of a particle moving towards an interface from ‘far’ 
out in one of the fluids shows that the film formation and drainage are not even always 
steps relevant to the passage of a body from one fluid to another. (See also Leal & 
Lee (1981) which contains a preliminary version of some of the material that is 
reported here.) For certain values of the interfacial tension, density difference and 
viscosity ratio between the two fluids, a long slender tail may form behind the body 
as it passes through the original plane of the undisturbed interface, and breakthrough 
or coalescence could then result from instabilities in this extending thread. The 
existence of breakthrough by this mode has, in fact, been demonstrated experimen- 
tally, but only for a single case of a rigid sphere approaching an initially flat interface 
at  moderate Reynolds number (Maru et al. 1971). 
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The emphasis of earlier investigators on the film drainage configuration seems to 
have resulted from the fact that the sphere or drop used in the early experiments 
generally had a density either equal to that of the fluid into which it would pass, or 
between the density of the two fluids. As we shall see, a force balance on a body with 
density intermediate between the two suspending fluids shows that only a film 
drainage configuration can result in such a situation. Since most of the time for 
coalescence or breakthrough in these cases is concentrated in the quasi-static film 
drainage configuration, most researchers focused their efforts on this portion of the 
overall process. 

A large number of analyses of the film drainage configuration have been reported 
in the literature. Many of these were reviewed by Jeffreys & Davies (1971). However, 
the most satisfactory analysis of the film drainage configuration is that of Jones & 
Wilson (1978), who carried out an asymptotic expansion for the sphere position and 
interface shape using the ratio of gap thickness to sphere radius as the small 
parameter. This treatment was improved by Smith & Van de Ven (1984) who also 
included the effect of gravity on the thin film. The chief shortcoming of previous 
theoretical work, in our opinion, is the implicit assumption that a draining film will 
occur in all cases. The only theoretical attempt to explore the possibility of the 
alternative tail configuration was reported by Maru et al. (1971), but this work 
contains conceptual errors (see Geller 1986, and 55 of this paper). 

Experimental data on coalescence and breakthrough at low Reynolds number is 
surprisingly limited. Studies which tried to investigate the entire coalescence process 
(Kirkpatric & Lockett 1974; Narayaran, Gossens & Kossen 1974) rather than looking 
a t  a single step, e.g. film-drainage, have tended to focus on the effects of the 
disturbance flow caused by drops on each other. A number of very similar film 
drainage experiments were reported by Princen (1963), Hartland (1969), Maru et al. 
(1971) and Shah, Wasan & Kintner (1972). 

In these latter experiments, a drop or sphere was held near the interface for some 
time and then released. This procedure resulted in a narrow gap between the body 
and interface at the time of release, and yields a film drainage configuration. However, 
the detailed results may differ substantially from what would occur if the body were 
released several radii from the undeformed interface. The shape of the interface and 
the position of the sphere were usually recorded photographically, although Hartland 
used a capacitance technique to measure the gap thickness. Table 1 shows the 
conditions in terms of the relevant dimensionless parameters for which experiments 
have been run with rigid spheres. It is evident that although only a few cases were 
reported, a fairly wide range of values for the parameters has been covered, albeit 
with a restricted range of initial conditions. 

This paper reports on a numerical study of a rigid sphere moving normal to an 
initially flat deformable interface subject to one of two conditions on the sphere 
motion; either the sphere is moving with a constant velocity or it is moving under 
the action of a constant body force, such as buoyancy. Only gravity, interfacial 
tension and viscous forces are considered in the force balance on the sphere ; the effect 
of Van der Waal’s and other electroviscous forces will be considered in a future study. 
Earlier work in this research group has examined the case of a sphere moving with 
constant velocity both normal to the interface (Lee & Leal 1982) and parallel to it 
(Berdan 1982) but only under conditions of small or moderate deformation. The 
present study extends the range of solutions to include large interface deformation 
for the constant-velocity case, and to obtain corresponding solutions under the 
condition of constant force which was not considered in the earlier work. Our 
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A Ca cg Re 

Hartland (1968) 4.76 0.753 0.133 3.62 
Hartland (1968) 45.88 0.470 0.090 3.62 
Hartland (1969) 0.022 0.465 0.089 0.003 
Hartland (1969) 0.210 0.150 0.026 0.045 
Maru et al. (1971) 0.434 3.83 1.972 15.19 
Shah et al. (1972) 0.440 2.545 1.782 800.76 

TABLE 1. Published experimental results (photographs or numerical data). 

objectives are: to expose those factors which control the details of interface 
deformation in this purely hydrodynamic problem ; to provide a basis for comparison 
with experimental results so that (a)  the influence of non-hydrodynamic factors can 
be recognized and (b)  the effects of such factors as fluid inertia or non-Newtonian 
rheology can be evaluated; and, finally, in the case of the constant-force problem, 
to determine conditions for establishment of a tailing configuration, rather than a 
draining film. 

The problem of ultimate interest, of course, is to understand the factors which 
control the mechanism and dynamics of the breakthrough process. However, at the 
level of analysis represented by the work reported here, we can investigate this 
question only in the context of purely hydrodynamic, continuum mechanisms. If, for 
example, breakthrough should occur by rupture of a thin film due to instabilities 
associated with London-Van der Waals forces, or even by a purely molecular 
mechanism where the ‘film thickness’ is of a molecular (non-continuum) scale, we 
could not determine that fact in the context of the present theory. Indeed, even if 
a purely hydrodynamic instability were relevant, its existence might require finer 
spatial or temporal resolution than is possible with the present methods of solution. 
What we can determine, however, are the conditions when the combination of 
viscous, capillary and body forces will lead to a conformation in which a film (or tail) 
is present. The stability of each configuration must ultimately be treated, including 
all relevant contributions to the local force balance (i.e. at least electroviscous effects) 
to judge exactly where and when breakthrough occurs. As indicated above, the effects 
of Van der Waals and other electroviscous forces will be reported in a future 
communication. 

Let us now turn to the main problem of this paper, namely, the generation of 
solutions to the full dynamical problem of a sphere moving towards an initially flat, 
but deforming fluid interface. The mathematical formulation, including the basic 
governing equations and an outline of the method of solution via the so-called 
boundary integral technique of low-Reynolds-number hydrodynamics will be pre- 
sented in the next section. The rest of the paper is concerned with the results and 
interpretation of our numerical calculations. 

2. Mathematical formulation 
2.1. Governing equations and boundary conditions 

We consider the translation of a rigid sphere normal to an initially flat but deformable 
interface between two immiscible, Newtonian fluids. The governing equations and 
boundary conditions are identical for the sphere falling through the lighter fluid or 
rising through the heavier fluid; we choose (arbitrarily) to present our analysis and 
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results for the latter case. Figure 3(a)  shows a schematic view of the system for a 
rising sphere. The analysis which we consider is predicated on the neglect of inertia 
effects in the fluids and in the motion of the sphere. Thus, we assume 

where we have chosen the velocity of the sphere, U,, in an unbounded fluid 2 as the 
characteristic velocity, and the radius of the sphere as the characteristic lengthscale. 
In the constant-velocity formulation of the problem, U ,  is simply the sphere velocity. 
When the sphere is assumed to move under the action of buoyancy, 
U ,  = $(ga2(ps-pz))/pz and this is the maximum velocity of the sphere. In this case, 
( 1 )  is a conservative estimate of conditions necessary for neglect of inertial effects 
when the sphere is near the interface. 

The governing differential equations, in dimensionless form were previously given 
by Lee &, Leal (1982), and they are simply restated here for convenience 

} in fluid 1 ,  

} in fluid 2, 

0 = - vp, + hV2U, 
0 = v*u,  

0 = - vp2 + v2u2 
0 = w-u, 

u1,u2+0 as IxI+co, 

u, = u2 
and at the interface XES, 

1 1 
An.T,-n.T, = - - (V*n)n+-  fn 

Ca cg 

(3) 

where the interface shape is denoted as z = f ( r ,  t )  and the outward pointing normal 
n at the interface is n = VH/IVHI with H = z - f ( r ,  t ) .  The stress 5 is the total stress 
minus the hydrostatic contribution and this is the reason why the body-force term 
appears in the boundary condition (6), rather than in the differential equations (2) 
and (3). It is convenient for formulation purposes to utilize a cylindrical coordinate 
system, as indicated in figure 3(a) ,  with z = 0 corresponding to the plane of the 
underformed interface, and the z-axis passing through the centre of sphere at  
z = - Z(t). Three dimensionless parameters result from the non-dimensionalization, 
the viscosity ratio, h = ,ul/p2; the capillary number Ca G p2 U,/y, and 
Cg = p2 U,/a2g(p2-p,). The latter two represent ratios of the characteristic viscous 
stress at  the interface relative to surface tension and buoyancy forces, respectively. 

The no-slip condition which applies at the sphere surface in all cases is that the 
fluid velocity equal the velocity of the sphere. In the case of a constant velocity, U,, 
this is simply 

For the constant-force problem, a force balance on the sphere yields the constraint 
on the solution 

u, = i, at x€Sp. ( 8 4  

1: TEz sin 8 d8 = 3. (8b)  

which determines the particle velocity a t  any instantaneous position. 
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FIGURE 3. (a) Schematic sketch of the system for numerical calculations. (a) The three-function 
representation of the interface shape. 
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The problem then is to solve (2) and (3), subject to the conditions (4)-(S), for the 
velocity and pressure fields and the interface shape as a function of time and/or 
particle position. 

2.2. Numerical procedure 
Although the problem in general is nonlinear, the nonlinearity arises from the 
presence of the unknown shape function f, in the boundary conditions; the governing 
differential equations are themselves linear. Therefore, it is possible to use a 
fundamental solution for the differential equation, and reduce the calculation to one 
of finding the particular form of the solution which satisfies the boundary conditions. 
Following the earlier work of Lee & Leal (1982), we use the general solution of Stokes' 
equations due to Ladyzhenskaya (1963) in which point singularities are distributed 
over the bounding surfaces of the fluid resulting in an integral representation for the 
pressure and velocity at any arbitrary point in that fluid, x:  

where 7 = position on bounding surface, variable of integration 

R I x - ~ I .  
Here S represents the boundary of the fluid domain. Thus, when (9) and (10) are 

applied to fluid 2, S includes both the sphere surface and the interface. In  fluid 1, 
the only boundary is the interface. It will be noted that the weighting functions in 
the integrals are just the velocity and stress components at the fluid boundaries. Thus, 
the basic idea is to use the boundary conditions (4)-(8) and the limiting forms of (9) 
and (10) at the boundaries to obtain a coupled set of integral equations for the 
boundary velocity and stress components which are unknown. Once these integral 
equations are solved for boundary values of the velocity and stress, the formulae (9) 
and (10) can be evaluated to obtain the velocity and pressure at any point in the 
fluid domain where these quantities are desired. Frequently, however, the only 
quantities of interest are the particle motion and interface shape and, for this, we 
need only the surface values of velocity and stress. 

The details of applying (9) and (10) together with the boundary conditions at the 
interface to obtain integral equations for the boundary velocity and stress components 
have been outlined previously by Lee & Leal (1982). Here, we content ourselves with 
merely reporting the results. A t  the interface we obtain 

and +(A+l)ul(x) =- (A- l )S 3 -u londS,+&~sp[-+-] .~ndS,  rrr 1 I rr 
4n S1 R5 R R9 

q[;+g].F(f)dS,, 8n X€S,, (12) 
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where the function F(f) is the stress difference a t  the interface, 
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here expressed in cylindrical coordinates. The superscripts I and P refer to the surface 
of the interface and sphere, respectively; the vector r is defined as r = x-7; and 

is the stress tensor evaluated as the interface is approached from fluid i. K is defined 
as i/IVHI with the shape function H defined in (15a, b,  c) .  Finally, on the surface 
of the sphere 

+& Js, [7i+7ir]*Tf.ndS,, I rr x€Sp. (14) 

Following the precedent of Lee & Leal (1982), the problem to this point has been 
described entirely in terms of the cylindrical coordinate system sketched in figure 3 (a). 
Although this representation appears as the ‘natural’ description in view of the 
axisymmetric nature of the problem, it can lead to very large values of and 
a2flar2 when the interface approaches a ‘tailing’ configuration and it was the loss of 
numerical accuracy associated with this fact which was largely responsible for 
termination of Lee & Leal’s earlier solutions at  relatively modest levels of deformation. 
In order to overcome this deficiency and ensure maximum numerical accuracy in the 
calculation of spatial derivatives, we divide the interface into three sections with the 
interface shape function H represented by a different coordinate system in each 
section (figure 3 b ) .  

Equation (15a) locates the interface in terms of the distance from the centre of the 
sphere as a function of the angle from vertical. In (15b)’ the interface shape is 
expressed in terms of the distance from the z-axis as a function of z. The ‘original’ 
cylindrical coordinate system is used to  describe the interface shape as a function of 
r in (15c). Although (15b) and (15c) are both written in cylindrical coordinates, 
different functional representations of the interface are used in the two cases. The 
vector function F ( f )  is then given by 
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where 

k2=[ l+(E)2] ' ,  n2 = i ( i r - E i z ) ,  

The derivatives in the equation for the normal stress jump junction F(f) were 
evaluated by use of a cubic spline polynomial. A spline function was fit through the 
centre points of the interface segments in each of the three regions and differentiated 
analytically at the node points to give afi/azi(zi = 8, z,  r). The spline function was 
also used to prevent the node points from convecting along the interface as the 
calculation progressed so that the original segment distribution was maintained 
throughout a numerical run. 

When the sphere velocity is known so that (8a) applies, (ll),  (12) and (14) give 
three integral equations for the unknown quantities uI, and p ,  provided the 
interface shape and sphere position are known. When we consider the constant-force 
problem, on the other hand, (8b)  applies and we have four integral equations for u', 
up, and Tp. Having solved these equations in either case for some specified initial 
shape, the kinematic condition, (7), can be used to calculate af /a t .  This allows the 
interface shape to be determined at some later time by adding aj/atAt to the present 
shape. The position of the sphere is also changed by an increment uP*At and the 
process is repeated using the new sphere position and interface shape. In  this way, 
the sphere is 'marched' forward from any given initial condition. 

As the problem of motion normal to the interface is axisymmetric, the surface 
integrals can be simplified greatly by analytically integrating in the azimuthal 
direction to reduce the surface integrals to line integrals. Equations (ll),  (12) and 
(14) then yield seven linear integral equations in the seven unknowns u:, ui, u,P,T:,,, 
Ti,,,, TZz, TEr. Following the work of Lee & Leal (1982), these equations were solved 
numerically using a simple collocation method. This technique converts the integral 
equations into a system of linear algebraic equations. The surface of the sphere and 
interface were divided into segments small enough that ul, up, and P could be 
approximated throughout the segment by the value at the centre of the segment. The 
criteria used here to determine the size of these segments is discussed in the following 
section. The integrations were then carried out by Simpson's rule. This procedure 
converts the seven integral equations into a system of (4N, + 2Np + 1) linear algebraic 
equations where N ,  is the number of segments on the interface and Np is the number 
of segments on the sphere. This system is readily solved by Gaussian elimination. One 
complication is that the integrands in (1 l ) ,  (12) and (14) become singular when x + 7 
(see (9) for definitions of x and 7). Thus integration over a small neighbourhood of 
x was carried out analytically using a linear expansion of the integrands in (1 1 )-( 14) 
so that all terms remain bounded during the numerical integration. 

The solutions generated by this numerical scheme are time-dependent through the 
kinematic condition (7), although the governing equations for the fluids are the 
steady Stokes equations. All of the equations and boundary conditions (2)-(7) are 
based upon the assumption of a characteristic timescale 
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Thus, any motion, including a time-dependent instability, which evolves on a 
timescale of this order or slower will be resolved by the numerical-solution scheme. 
Surface-tension-driven flows, with a lengthscale I ,  will be characterized by a timescale 

t* = p!!. 1 
U 

Hence, such motions will be resolved if 

This condition can be written in the alternative form 

1 
-Ca 2 O(1). 
a 

Thus, any surface-tension-driven disturbance with a lengthscale 1 = O(a)  or larger will 
be resolved for systems with Cu = O(1).  Very small wavelength disturbances, or 
disturbances in systems with a large interfacial tension will not be resolved. 

3. Preliminary results 
The solution to the problem formulated in the previous section will generally 

depend on both the initial location of the sphere and the initial shape of the interface. 
Therefore, a new set of calculations is required, in principle, for every combination 
of initial conditions. In  an attempt to circumvent this considerable complication, Lee 
& Leal (1982) pursued the concept of ‘limiting solutions’ in which the characteristic 
time for displacement of the sphere is either very much larger or very much smaller 
than an intrinsic measure of the characteristic timescale for interface motion. These 
two cases correspond t o  an interface that remains flat for the fast-moving sphere, or 
one which reaches a steady-state deformation, i.e. u-n = 0 a t  each instantaneous 
position of the sphere in the case of ‘slow’ transition. I n  either of these cases, the 
velocity of the sphere and the interface shape (or velocity) would depend only on A ,  
Ca, Cg and the instantaneous position of the sphere, thereby removing the prior 
history of sphere motion and interface shape as a factor in the solution. Unfortunately, 
comparison with exact numerical solutions showed that only relatively few combi- 
nations of A,  Ca, Cg and initial sphere position corresponded accurately to  these 
limiting cases. 

In  the present paper, we have therefore considered further the dependence of the 
solution on the initial position of the sphere. It is intuitively evident that a starting 
position which is sufficiently large should have a small effect on the solution when 
the sphere is near the interface. This is illustrated in figures 18 and 20 for results 
obtained under the conditions of a constant force, ( 8 b ) .  In  these figures, interface 
shapes are plotted in a reference frame moving with the sphere so that  the interface 
appears to be sweeping past the sphere for starting positions, lo ,  of 3, 5 and 10 radii 
from an undeformed interface, with A = 1, Cu = 1 ,  Cq = 1 and h = 10, Ca = 1 ,  
Cg = 1. We shall discuss these results in some detail in $5 .  For present purposes, i t  
is sufficient to note that the interface shapes for starting positions of 5 and 10 appear 
to be identical by the time the sphere reaches a position 3 radii away from the original 
interface position. The case starting at 3 also produces deformation equal to the other 
two cases once the sphere reaches 1 = 0.75. Figure 20 indicates that for a higher 
viscosity ratio, it takes longer for the three cases to converge to the same shape, but 
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FIGURE 4. Sphere velocity aa a function of R,, for the limiting case of slow sphere motion (i.e. 
ul*n = 0). 1 = 1.0, 3.0, 5.0; h = 10, Ca = Cg = 1 for the constant force problem ( x  , results from 
calculations). 

after 1 = 0.10, the results for the various starting positions are indistinguishable. 
Plots of sphere velocity versus position for these cases are given in figures 19 and 21. 
Again, the results for the three cases converge as the sphere reaches a position 
straddling the interface. Finally, figure 5 gives the same type of plot for the 
constant-velocity case with A = 1,  Cu = 1 ,  Cg = 1 with the same qualitative results. 
It is evident that a starting position 1, = 3 is large enough to produce solutions which 
are qualitatively (and over most of the trajectory quantitatively) representative of 
the solution for a sphere approaching an interface from any large distance, and we 
use the value 1, = 3 for many of the computations that are reported in this paper. 
Solutions with a smaller initial separation between the sphere and the interface can, 
however, exhibit important qualitative differences from these ‘large initial separation ’ 
solutions, as we shall consider later in some detail. 

Another aspect of the numerical calculation which should be discussed prior to the 
detailed results is the fact that the domain of numerical integration along the 
interface in (13), (14) and (16) is necessarily truncated at  some finite distance R,, from 
the centreline. Numerical and asymptotic justification for this procedure was 
provided by Lee & Leal (1982) for the case of sphere motion at a constant velocity. 
Figure 4 demonstrates the effect of increasing R, on the sphere velocity for the 
constant-force problem at three different sphere positions. All other calculations in 
this study were carried out with R, 2 12. It may also be noted that the truncation 
is equivalent to assuming u1 and TI = 0 for r > R,. Thus, additional justification of 
the truncation procedure can be achieved by comparing the calculated values of u1 
and f near the point of truncation with values near the centreline. Generally, several 
orders of magnitude difference existed between these two sets of values. 

Although it is a fairly straightforward procedure to decide on a reasonable lower 
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bound for R,, deciding on the segment sizes along the sphere and interface surfaces 
is a more complex problem. Of course, placing more segments on the surface comes 
closer to representing the process of integration, but adding segments to the surface 
increases computation time and cost. The number of segments necessary is strongly 
influenced by the details of the weighting function distribution along the surface. In 
the collocation method used here, it is assumed that u1 and F or Tp are constant 
at the centre-point value within each segment; thus, the density of segments must 
be largest in regions where the values of these variables change most rapidly. Also, 
the contribution from any segment decreases at  least as fast as l/r2 as r increases, 
so larger segment increments can be used as the distance along the interface increases. 
The solutions are axisymmetric and we have already indicated that the azimuthal 
angle $ has been integrated out from the full integral equations (13)-( 16) to obtain 
the equations which are solved here. Thus the collocation ‘segments’ on the sphere 
are actually ‘strips’ around the sphere, with the sphere surface incremented in terms 
of the polar angle 8. Following Lee & Leal (1982) a uniform segment distribution in 
8 was chosen for the sphere, with 10 increments in 8 covering the sphere surface when 
the interface deformation was small or moderate, increasing to 16 for large 
deformations and/or small sphere-interface separations. 

A non-uniform distribution of segment sizes was used along the interface. The 
number of segments (which again are strips encircling the (T = 0)-axis) was taken as 
14 for ‘stiff’ interfaces, i.e. those that showed slight deformation, and 16-35 for 
interfaces with large deformation, again the number increasing as the deformation 
grew. 

When the three-coordinate-system representation wasused to describe the interface, 
two additional parameters were specified, Om,, and zmin. These were chosen to 
correspond to the end of the spherical cap and tail regions, respectively, as illustrated 
qualitatively in figure 3 ( b ) .  As a result, in each of the three basic regions the interface 
closely followed a coordinate surface except in the area where one representation 
changed over into another, and the partial derivatives of the shape functions in each 
region had small magnitudes in the chosen coordinate representation. 

The final parameter of the numerical algorithm was the timestep used in incre- 
menting the interface shape and sphere position. This marching was carried out by 
simply multiplying the instantaneous velocity of the sphere or interface segment, 
calculated by the collocation technique, by the timestep. In other words, the exact 

1 = l o +  uPdt, 
equation for sphere position, t 

Jt . 
n 

(-1 
is approximated by, 1 = lo+ upAti, 

where a new u: is calculated at each timestep, and similarly for the interface. The 
largest non-dimensional timestep, At = At’/(a/U,) used was 0.05 and this value was 
decreased as the rate of change of the sphere position or interface shape increased. 
Also, for both constant-force and constant-velocity calculations, a shorter timestep 
is needed as the distance between two surfaces (for example the sphere and the 
interface) decreases. Although this time-marching procedure is accurate only t o  O(At), 
the requirement that At decrease as bounding surfaces approach necessitates a small 
enough timestep that it is not necessary to employ higher-order methods. Whenever 
a new timestep was introduced, an overlap region with the old larger timestep was 
included in the calculation. The shapes and velocities in this region were compared 



Motion of a particle normal to a deformable interface 39 

for the two cases and if the differences had been greater than 2 %, the small timestep 
would have been introduced at an earlier point until the difference was within 2 Yo. 
In all cases, however, the difference actually computed was less than 0.5 yo when the 
new timestep was introduced. 

4. Results for motion of a sphere from a large distance at constant velocity 
The numerical scheme described in the preceding two sections has been used to 

investigate the motion of a sphere normal to a deformable interface. We first consider 
the case where the sphere moves with a constant velocity from a large distance. The 
results presented in this section complement Lee & Leal (1982) who considered the 
same problem but were limited to calculations for moderate deformation only. Using 
the three-coordinate-system representation, we have now been able to numerically 
consider cases where the interface shows large deformation, continuing in some cases 
to the point where the sphere has passed many radii beyond the plane of the 
undeformed interface. A feature of the numerical algorithm is that the maximum 
allowable timestep becomes smaller as the thickness of either the film of liquid in front 
of the sphere or the tail becomes thinner. Thus, the present computations were 
terminated when the cost to further increment the sphere position by a small distance 
became unacceptably large. In no case was this computational termination point 
coincident with the onset of instability of the film or tail, or of ‘contact’ between 
the sphere and the interface. Thus, as noted earlier, a definitive conclusion was never 
possible as to the final mode of breakthrough. In some cases, however, the rates of 
change of the film or tail thickness do provide strong circumstantial evidence to 
support either film rupture or tail rupture as the likely mechanism of breakthrough. 

In order to provide a framework for discussion of the results, it is useful to begin 
by reviewing the expected role of viscous, capillary and body forces in determining 
the degree of interface deformation for the case of sphere motion at a constant 
velocity. From a macroscopic point of view, a basic energy balance at any moment 
will exist between the rate of working, FU,  by the particle on the fluid (where U is 
the particle velocity and F is the hydrodynamic drag which, a t  steady state, is equal 
in magnitude to the applied force necessary to maintain the constant velocity U ) ,  
and the rate of conversion to internal and potential energy. When the particle is far 
from the interface, the rate of working, FU, is converted entirely to heat via viscous 
dissipation. As the particle approaches the interface, however, the force, F, required 
to maintain the velocity U increases, partly as a consequence of an increase in the 
rate of viscous dissipation and partly to balance the increase in potential energy of 
the system as the interface begins to deform so that the heavier fluid is carried across 
the plane, z = 0, of the undeformed interface and the surface area is increased. If we 
focus on the region above z =  0 that is occupied by fluid 2, as illustrated and 
considered in detail for a tailing configuration in the Appendix, an approximate 
balance exists between the rate of working FU, the rate of increase of potential energy 
as the volume of fluid is increased by ‘entrainment ’ into the tail, the rate of increase 
of surface energy as the interfacial area is increased, the rate of working by surface 
stresses at the exterior boundaries of the film plus tail and the rate of viscous 
dissipation in the film plus tail. 

The details of interface deformation, can only be determined by solving the full 
problem outlined in the previous section, and we shall present results of this type 
very shortly. Some general features can be understood, however, on the basis of the 
approximate energy balance in the film plus tail that we have just outlined. Let us 
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consider initially the case A = 0. Now, for any given A ,  the rate a t  which the interface 
deforms for a given rate of input of mechanical energy, FU,  is determined by the 
incremental increase of potential energy that is required due to the increase of surface 
area and the increased volume of heavy fluid above the ( z  = 0)-plane. Since the 
potential energy increase is proportional to the surface tension and the density 
difference between the two fluids, and Ca and Cg measure the characteristic 
magnitude of viscous forces relative to capillary and buoyancy forces, it is evident 
in the constant-velocity case that a decrease in Ca and/or Cg will tend to reduce the 
rate of interface deformation. Thus, for a given position of the sphere, the interface 
will tend to be less deformed for smaller values of Ca or Cg. Of course, some of the 
mechanical energy is converted irreversibly to heat even for h = 0, but as h increases 
both the rate of dissipation within the film plus tail and the rate of working by viscous 
stresses at the boundary of the tail-film region will increase. Consequently, for fixed 
Ca and Cg (roughly, fixed F U ) ,  we may expect that  the rate of deformation will 
decrease with increase of h since an increased fraction of the input energy is being 
dissipated to  heat. Thus, again, for a given instantaneous position of the sphere, the 
interface will be less deformed as h increases. An upper bound on the amount of fluid 
which the sphere can carry across the ( z  = 0)-plane corresponds to the case when 
viscous effects are negligible and the interfacial free energy is zero (Ca = co). I n  this. 
case, the maximum volume of entrained fluid will be determined by a balance between 
the force applied to the fluid from the sphere, F ,  and the total buoyancy force on 
the fluid in the film plus tail region. We shall see shortly, from our detailed solutions, 
that  this balance is very closely approached for h = 0 even when Ca = O(1). This is 
illustrative of the fact that  interfacial tension acts primarily to moderate the rate 
of entrainment across the interface a t  any moment by affecting the shape of the 
interface in an  attempt to  minimize the area (or curvature), but does not itself control 
the total amount of fluid which can be carried across the plane by entrainment. 
Indeed, as the density difference becomes very small (i.e. Cg+co), the maximum 
degree of interface deformation will become very large for any level of interfacial 
tension (Berdan & Leal 1982). The role of non-zero values for the viscosity ratio, A, 
is similar to interfacial tension in the sense that the interface deformation (and rate 
of entrainment) is decreased a t  any instant, relative to its value for h = 0, but a 
non-zero viscosity ratio does not in itself control the total maximum volume of fluid 
which can be entrained across the ( z  = 0)-plane, this still being determined by the 
balance between drag and the net body force on the film plus tail. 

It is important to recognize that the constant-velocity problem considered in this 
section is special in that  a tailing configuration of interface deformation must 
ultimately be achieved in all cases in the absence of hydrodynamic instabilities 
leading to rupture of the interface (the exception being Ca = Cg = 0, corresponding 
to  a solid wall). For very small (but non-zero) values of Ca and/or Cg, the interface 
will remain virtually flat until the sphere begins to  penetrate the plane z = 0, and 
the minimum dimension of the film which then forms will be exceedingly small 
compared to  the radius of the sphere. Furthermore, the force required to move the 
sphere at constant velocity will become exceedingly large. Nevertheless, a film and 
tail must ultimately form. Whether such an extremely thin film could actually be 
realized in the ‘real’ problem, where additional effects such as Van der Waals forces 
are present is doubtful, but that  is a question which cannot be answered in the present 
context where only hydrodynamic, surface-tension and body forces are considered. 
I n  addition, as a practical matter, the present numerical scheme is not well-suited 
to  cases involving extremely thin films (or tails) and we are thus forced (by the cost 
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of obtaining a solution) to stop some calculations involving small values of Cu and/or 
Cg before the sphere moves a significant distance across the ( z  = 0)-plane. In these 
cases, i t  is important to recognize that the inability to proceed further with the 
solution does not mean that a tailing configuration will not ultimately appear in the 
constant-velocity case (assuming of course that no hydrodynamic instability is 
encountered). It is only the inability of our present scheme to generate the solution 
with reasonable economics for small Cu and/or Cg which prevents our demonstrating 
the tailing configuration which must inevitably occur. The constant-velocity problem 
does not, therefore, contribute directly to our understanding of the conditions for 
existence of the film drainage or tailing configurations which can occur in the case 
of motion under the action of a constant force. It does provide the simplest forum 
for understanding, in detail, the physics controlling interface deformation and that 
is its most important role. In addition, however, the constant-velocity case provides 
an essential basis for high resolution experimental observations over a wide range 
of Ca and Cg as are necessary to expose the role in the coalescence process of effects 
such as non-Newtonian rheology or inertia which cannot be studied easily by a 
theoretical (numerical) analysis (Geller 1986). 

Let us now consider the results obtained from the numerical calculations in detail 
for the case of sphere motion at a constant velocity. The first case treated is h = 1, 
Ca = Cg = 1 .  We choose to begin with this case because the ‘ characteristic ’ measures 
of viscous, surface-tension and gravity forces are all of equal magnitude and thus these 
forces should be expected to have a roughly equivalent role in the behaviour of the 
sphere and interface. Profiles showing the interface shape at equal increments of time 
(or particle displacement) are plotted in figure 5. The most obvious feature of this 
solution is the long, slender tail which evolves behind the sphere and the rather 
considerable volume of fluid which is carried across the interface by the sphere. The 
film over the front portion of the sphere does thin slowly, but in none of the cases 
shown in the figure is it particularly thin compared to the sphere radius. It is also 
noteworthy that none of the interface shapes drawn in figure 5 exhibit any indication 
of hydrodynamic or capillary instability ; although the spatial resolution of our 
solution algorithm is such that disturbances on the scale of either the tail diameter 
or minimum sphereinterface separation could be detected if they were present. It 
may be noted in this regard that the linear stability analysis of Lang & Wilke (1971) 
leads to the conclusion that the ‘film’ in front of a rigid sphere approaching an 
interface should be stable in the absence of Van der Waals forces. On the other hand, 
the experimental observations of Maru et al. (1971) show the onset and growth of a 
varicose disturbance on the ‘tail’ which does cause it to break apart, but only after 
the tail is approximately 120 particle radii in length, far beyond the final configuration 
which is attainable at  reasonable cost with the current method of solution. The 
obvious alternative would seem to be a detailed stability analysis for a draining, 
extending tail, such as that shown in figure 5.  Unfortunately, none of the existing 
analyses of ‘thread ’ stability is directly applicable, and an improved analysis does 
not appear viable to us a t  the present time due to the complicated and ‘unknown’ 
nature of the ‘ base ’ geometry and flow. The classical analyses of Rayleigh (1892) 
and Tomotika (1936) for surface-tension-driven instability of a stationary thread 
neglect the non-uniform geometry, the draining flow in the tail, and, most importantly 
the extension of the tail with time, which is known from both experimental and 
theoretical studies to increase stability, cf. Grace (1971), Chin & Han (1979) and 
Olbricht & Leal (1983). A problem which more closely resembles the situation in the 
tail is the stability of an infinite thread that is aligned with the symmetry axis of 
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FIQURE 5. Interface shape aa a function of sphere position (drawn in a reference frame in which 
the sphere is fixed) for h = 1, Cu = 1, Cg = 1 ;  -, shapes for sphere initially at I ,  = 3;  ---, 
1, = 5;  ----, I ,  = 10. Constant-velocity case. 

a uniaxial straining flow, treated by Mikami, Cox & Mason (1975). Their analysis 
includes the effect on stability of extension and of a decrease in thread diameter, but 
in a controlled manner determined by the assumed uniaxial straining flow (which is 
not present in the tail behind the sphere). These researchers predicted a fastest 
growing wavelength which depends on the instantaneous radius but which reaches 
an asymptotic limit with time. For the case A = 1, Ca = 1, this asymptotic limiting 
wavelength is approximately 35 thread radii (or roughly 15 sphere radii for our case) ; 
our calculations go as far as a length of about 6.5 for the tail region, considerably 
less than the wavelength for instability predicted by Mikami et al., and much less 
than seen experimentally by Maru et al. (1971). I f ,  as said before, extension and 
thinning of the fluid cylinder are factors stabilizing the growth of capillary waves, 
Mikami’s results may provide an upper bound on the length that the tail can achieve 
since the flow assumed in their calculations provides the greatest extensional 
character. 

An examination of the governing equations and boundary conditions, (2)-(8), 
indicates that the interface shape will depend on the parameters A ,  Cu and Cg. Lee 
& Leal (1982) have previously discussed the role of each of  A ,  Ca and Cg on the 
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FIGURE 6. Interface shape as a function of sphere position for h = 0, Ca = 1 ,  Cg = 1, 1, = 3. 
Constant-velocity case. 

behaviour of the deforming interface at small and moderate deformations. In the 
remainder of this section, we focus on the large deformation behaviour of the interface 
beginning with the influence of the viscosity ratio A. The effect of the viscosity ratio 
can be seen by comparing the results in figure 5 with those in figures 6 and 7, where 
we consider the same values of Cu = Cg = 1, but h = 0 and 10, respectively. It is 
visually evident on the basis of the film thickness at the front stagnation point of 
the sphere that the amount of deformation for a given position of the sphere is 
decreased in the early part of the deformation process as the viscosity ratio, A is 
increased. This visual impression is confirmed if we actually measure the volume of 
fluid in the film plus tail region above the ( z  = 0)-plane as a function of particle 
position, though the differences on this basis between the cases h = 0 and A = 1 are 
very small. This can be seen in figure 8 where we have plotted (for reasons to be 
discussed shortly) the total volume of the fluid region plus sphere normalized by 6na2. 
We have argued earlier that the influence of increased viscosity in the upper fluid 
should be primarily one of controlling the rate and details of interface deformation 
rather than the maximum amount of fluid which can be carriedacross the ( z  = 0)-plane. 
This conjecture is confirmed for A = 0 and 1 by the results in figure 8, where a 
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FIQURE 7 .  Interface shape as a function of sphere position for h = LO, Ca = 1, Cg = 1,1, = 3. 
Constant-velocity case. 

maximum is obvious in the volume which is approximately independent of A,  though 
occurring somewhat later (i.e. for more negative values of I )  for h = 1 than for A = 0. 
Beyond the point of maximum volume, the film plus tail region begins to lose fluid 
by drainage, though this process is also slower for A = 1 than for A = 0. The case 
A = 10, which initially begins with a much smaller volume of entrained fluid (for 2 > 0) 
has not yet yielded a maximum in the volume of entrained fluid by the time that 
the calculation was stopped due t o  the thinness of the film a t  the front of the sphere, 
but the total volume of fluid entrained is similar to  the other cases at intermediate 
values of 1. In  all of the general features described above, the numerical solutions 
illustrated in figures 5-7 confirm the qualitative physical picture (outlined a t  the 
beginning of this section) of the role of A in the interface deformation process. Certain 
detailed features of interface shape could not be predicted by the qualitative 
arguments, however, and these are also of interest here. 

First, it  is evident that the portion of the tail plus film region which changes shape 
most rapidly once the total volume begins to  decrease by drainage is strongly 
dependent on A. I n  particular, for A = 0, the film region barely thins at all but instead 
is carried along in almost rigid motion by the sphere. All of the loss of fluid volume 
occurs in the tail, which thins rapidly both because it is being stretched and because 
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FIGURE 8. Drag ratio us. sphere position for Cu = Cg = 1, A = 0, 1 and 10: -, numerically 
calculated values; volume of the tail plus sphere measured from the numerically calculated interface 
profiles divided by Gnua; +, ( A  = 0); a, ( A  = 1); 4, ( A  = 10). 

there is no flow entering the tail from the film to compensate for this stretching and 
for the drainage of fluid back across the ( z  = 0)-plane. For h = 1, on the other hand, 
the film is thinned more rapidly as a consequence of viscous stresses at  the interface, 
the fluid in the tail drains more slowly and the result is a marked decrease in the rate 
at  which the tail decreases in radius. The fact that the film barely thins at all when 
viscous stresses are removed from the interface (in setting h = 0) shows that neither 
capillary nor body forces play a significant role in this process, at least for 
Ca = Cg = O(1). Finally, although we have indicated previously that the mode of 
breakthrough cannot generally be established in the absence of a thorough study of 
possible hydrodynamic instabilities, and/or other phenomena associated with the 
existence of colloidal forces between the interface and sphere surface, or between the 
interface and itself (for example, across the thin tail), a simple comparison of the rate 
of decrease of the film and tail thickness in the case h = 0 is strongly suggestive that 
breakthrough will occur in that case by a necking failure in the tail, leading 
presumably to a sphere in fluid 1 surrounded by a layer of fluid 2 (though this cannot 
represent an equilibrium configuration, see Johnson & Sadhal 1985). 

A final point of interest, with regard to these first three solutions, is the variation 
of the hydrodynamic drag on the particle as a function of its position. The numerically 
calculated values of the drag ratio (i.e. the drag/6np2 aU)  for the cases h = 0, 1 and 
10 with Ca = Cg = 1, are shown as a function of particle position by the solid lines 
in figure 8. The deviation in the drag from Stokes’ law obviously increases with A. 
Furthermore, the results for h = 0 and h = 1 show a definite maximum in the drag 
at  a position where the particle has passed beyond the plane of the undisturbed 
interface. This maximum in the drag appears to occur primarily because of a 
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corresponding maximum in the volume of fluid in the complete column consisting 
of the film and tail. To demonstrate this fact, let us consider the net body force on 
the fluid column excluding the sphere which is simply (pl -p2)  g(v, +v,), where wf is 
the total volume of fluid in the column (i.e. film plus tail), and TJ, is the volume of 
the sphere. If the contributions of viscous stresses and interfacial tension were 
completely negligible in the macroscopic energy balance described earlier, this net 
body force should exactly balance the hydrodynamic force from the particle to  the 
fluid. I n  this case, 

Thus, for Cg = 1, 

Drag ratio = U C g - ' .  
6na3 

TJf +US Drag ratio = - 
6xa3 ' 

and it would follow that any variation in the drag ratio with particle position should 
be reflected in temporal variations of TJ, +v,. In  order to  test this conclusion, values 
of TJ, + wf were measured from the numerical solutions, and (v, + vf)/67ca3 was plotted 
in figure 8 for comparison with the numerically calculated drag ratio. It is evident 
that the drag ratio and (zl, +v,)/67ca3 agree extremely well for the case A = 0. 
Apparently, any contributions of viscous dissipation or the increase in surface energy 
due to increased surface area to the overall energy balance (from which the simple 
force balance of (30) is derived) are negligible for h = 0, Ca = Cg = 1. On the other 
hand, as h increases, the drag ratio considerably exceeds (v,+vf)/6na3, though the 
position of the maximum in the drag ratio still appears to  agree well with the position 
of the maximum in (v,+v,). We believe that the difference between the drag ratio 
and (v, + v,)/67ca3 for h > 0 is primarily a consequence of the increased rate of working 
by viscous stresses at the interfacial boundary of the columnar region. The quantitative 
comparison for h = 0 provides strong evidence for the validity of the qualitative 
picture, based on an overall energy balance, that was outlined a t  the beginning of 
this section. 

In  the remainder of this section, we consider the detailed effects of variations in 
Ca and Cg on the large deformation behaviour of the interfaces. We first consider two 
cases of small Ca and Cg. Figure 9 shows interface shapes for the case h = 1, 
Ca = Cg = 0.1 and figure 10 presents the results for h = 1, Ca = Cg = both with 
the centre of the sphere initially 3 radii away from a flat interface. The asymptotic 
limiting case, Ca < 1, Cg < 1, corresponds to very large surface tension and gravi- 
tational forces relative to viscous forces, and is known to yield asymptotically small 
deformations of the initially flat interface provided only that the sphere has not begun 
to  penetrate the plane of the undisturbed interface. Although it is not known precisely 
how small Ca and Cg must be for this asymptotic behaviour to manifest itself, i t  might 
be supposed that simple dominance of surface tension or gravitational forces 
(corresponding to Ca or Cg < 1) would be enough. It is evident from figure 9 that 
this is not the case. Even for Ca = Cg = 0.1, there is considerable deformation before 
the sphere comes close to the ( z  = 0)-plane. The role of viscous forces is small in this 
case relative to  surface tension and gravity effects so we see, (as was also true for h = 0 ) ,  
that there is only very slow thinning in the film ahead of the sphere in spite of the 
fact that A = 1. The important effects are taking place in the tail behind the sphere. 
Unlike the earlier results, a long tail is not formed behind the sphere. What is evident 
from figure 9 is that once the interface has been deformed by the sphere, say, between 
1 = - 1 and -2,  the relatively large surface tension tends to  drive the interface 
towards a minimum energy configuration, namely a spherical shell encapsulating the 
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FIGURE 9. Interface shape as a function of sphere position for h = 1 ,  Ca = 0.1, Cg = 0.1, 1, = 3. 
Constant-velocity case. 

particle with a flat interface below. A t  the same time, the relatively strong capillary 
forces, in combination with the increased density difference between the two fluids, 
causes rapid drainage and a pinching off of the tail behind the sphere. In the second 
case, A = 1, Ca = Cg = lop3, the magnitude of the surface tension and density 
difference is such that the interface appears nearly rigid at  the point where the 
computation is terminated. Breakthrough, in this case, undoubtedly occurs in real 
systems by rupture of the thin film on the front portion of the body. Nevertheless, 
if we were to continue the present calculations for a sufficiently long time, a tail would 
eventually develop. 

The points which appear with the plot for Ca = Cg = are exact analytical results 
for sphere motion towards a flat interface with A = 1 calculated by Lee & Leal (1980). 
The present numerical results can be seen to agree very well with these analytical 
results. It should be noted that this comparison provides a fairly critical test of the 
accuracy of the numerical scheme because the numerical solution difficulties are most 
severe where sphereinterface separation becomes very small. The generalities 
discussed with regard to figure 8 (such as the existence of a maximum in the drag) 

Figure 11 shows the drag ratio versus position for A = 1, Ca = Cg = 1,O.  1 and 
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1, = 3. Constant-velocity case. 
FIQURE 10. Interface shape as a function of sphere position for h = 1, Ca = Cg = 

are seen to apply in these cases as well; however, the increased restoring force 
associated with the decrease of Ca and Cg causes a very substantial increase in the 
magnitude of the drag ratio. 

Finally, three constant velocity cases were considered in which h and Cg were held 
equal to 1 .O, but Ca was varied to examine the effects of surface tension in more detail. 
In one of these cases, we took Ca = with the result that the interface deformed 
very little, and a deformation mode was observed similar to  Ca = Cg = low3 but with 
slightly increased amplitude of deformation. In the interest of space conservation, 
this case is not shown here but will be available in Geller (1986). The second case, 
h = 1, Cg = 1 and Ca = 00 is depicted in figure 12. Here, the surface tension is zero. 
As the viscosity ratio is the main factor controlling the film thickness for either Ca 
or Cg = 0(1), the thinning of fluid in front of the sphere is almost identical to that 
shown in figure 5 for h = Cg = Ca = 1 .  The difference in interface shapes between 
these two cases is in the thickness of the tail behind the sphere. In the present case 
without any surface tension, the tendency of the tail to pinch off is reduced, and a 
broader tail results. 

The final case we present in the series illustrating the role of surface tension is 



Motion of a particle normal to a deformable interface 49 

30 

24 

.s 18 
e! 
M 

6 
12 

6 

-8  -6 -4  -2  0 2 
L 

FIQURE 11. Drag ratio us. sphere position for Ca = Cg = 1, 0.1 , lo-*, h = 1, constant-velocity case. 
0, values calculated from Lee & Leal (1980). 

Ca = 10-1 ( A  = 1, Cg = l) ,  shown in figure 13. In  this case, Ca is small enough to have 
a very strong influence on the behaviour of the interface and yet not so small as to  
inhibit all deformation prior to the sphere crossing the ( z  = 0)-plane. Examination 
of figure 13 shows that for the early stages of deformation, 1 = 3 to 0, surface tension 
acts to broaden the deformed part of the interface by flattening it,  and thereby 
minimizing the total curvature. This broadening can be seen by comparison with the 
result for Ca = 1 in figure 5. In spite of this broadening effect, however, the total 
volume of fluid carried across the plane of the initially undeformed interface is nearly 
equal for the two cases, consistent with the predictions from the macroscopic balance 
on the sphere-tail system. Furthermore, though the resistance of the interface to 
deformation caused by the large value of y initially results in a rapid thinning of the 
thin film in front of the particle, this film does not continue to drain as the sphere 
moves but eventually reaches a steady thickness equal to that for Ca = 1, Cg = 1, 
A = 1 as expected based on our earlier discussion of the role of the viscosity ratio in 
the formation of the film. As the sphere moves across the initial plane of the interface, 
1 = 0 to - 3, the interface must deform in front of the sphere, and the interface shape 
near the sphere is almost identical to the case (figure 5 )  where Ca = 1. However, 
the effect of surface tension is still to keep the interface as flat as possible, and the 
interface does not drop back to the ( z  = 0)-plane as near to the centreline as for the 
Ca = 1 case. As a consequence, the volume of fluid entrained with the sphere for 
Ca = lo-' is somewhat larger during this period ( 1  = 0 to -3) than for Ca = 1 (as 
is the drag ratio). From 1 = 0 to - 3, a transition is also beginning from one low-energy 
configuration to another. Through 1 = -3 ,  surface tension acts to broaden the 
deformation in order to reduce the interfacial area. After this point, however, 
the deformation is great enough that the interface begins to move rapidly towards the 
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FIQURE 12. Interface shape as a function of sphere position for h = 1, Ca = OC), Cg = 1, I, = 3. 
Constant-velocity case. 

other low-energy shape of an encapsulated sphere with the tail pinched off at the rear. 
Unlike the case presented earlier in which both Ca and Cg were l O - l ,  the primary 
mechanism driving the constriction in the present case is capillary forces, and it can 
be seen by comparison of figures 9 and 13 that the drainage occurs less rapidly. 
Nevertheless, drainage for Ca = lO-l, Cg = 1 does occur faster than for the 
Ca = Cg = 1 case, with 40 % of the entrained volume being lost between 1 = - 4 and 
-5 for the former case, and only 50 yo from I = - 4  to -8 in the latter. The rapid 
change from one low-energy configuration to another causes a rapid pinching of the 
interface in the tail region so that the likely cause of breakthrough for cases like 
figures 9 and 13 with Cu = 10-l would seem to be ‘pinch off’ in which the thickness 
of the tail goes to zero, rather than the growth of a hydrodynamic instability in the 
tail as seems likely for A = 1 ,  Cu = 1 ,  Cg = 1.  

The final constant-velocity case we present is for A = 1, Ca = 1 ,  Cg = lo-’. This 
is a case where the role of the density difference between the two fluids dominates 
over that of the viscosity ratio or surface tension. Figure 14 presents the interface 
shapes calculated for this system. The most noticeable feature of these shapes is that 
without surface tension to broaden the deformation, the interface falls back to the 
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Constant-velocity case. 

( z  = 0)-plane relatively near the centreline. In most cases, the interface is flat beyond 
r = 1.5. Also, although the magnitude of the drag ratio for this case is comparable 
to that for h = 1, Ca = lO-l, Cg = 1 (figure 15); consistent with the results of the 
macroscopic balance (equation (30)), the volume of fluid carried across the 
( z  = 0)-plane is an order of magnitude smaller for the Cg = 10-1 case. A noticeable 
difference in the drag ratio for the case Cg = lO-l, Ca = 1 relative to the other two 
cases shown in figure 15 is that the drag ratio appears to be levelling off after 1 = - 3, 
while the drag continues to decrease for the other two cases. This difference is 
attributable to the different mechanisms causing fluid to drain from the region behind 
the sphere. In the case where the density difference between the two fluids is the 
dominant driving force for drainage, the particle is almost entirely encapsulated and 
this combined body of a sphere and fluid film is moving as a single unit. This 
conclusion is supported not only by the interface shapes of figure 14, but also by the 
u, and u, values calculated for the interface in the encapsulated region. Behind the 
sphere, the fluid column is apparently no longer being supported by the viscous forces 
and so does not contribute to the drag on the sphere. In this case, C ,  levels off near 
the value for an isolated spherefilm combination moving through fluid 1. In  the cases 
where surface tension is the major cause of drainage (figure 13), or is equal in 
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FIGURE 14. Interface shape as a function of sphere position for h = 1, Ca = 1, Cg = 0.1,1, = 3. 
Constant-velocity case. 

importance to the density difference (figure 9), a significant force is being exerted on 
fluid 2 at the interface. In the film region in front of the sphere, the force due to surface 
tension acts in the direction opposite to sphere motion as the inward normal has a 
downward pointing z-component. After the sphere begins to become encapsulated, 
part of the interface near the sphere has an inward pointing normal whose z-component 
is in the same direction as the sphere’s motion, and in this region the z-component 
of the normal force due to interfacial tension will be directed along the line of sphere 
motion thereby lowering the drag. As the area of the interface with upward pointing 
z-component of n is growing (unlike the film region which has a downward pointing 
component of the normal but is stable in size), the net effect is for the drag on the 
sphere resulting from interfacial tension to decrease with time as the pinching 
continues. Since the pinching process will not stop until the sphere is entirely 
encapsulated and, as shown above, the drag following from the density difference 
levels off, the drag ratio continues to decrease for these two cases. 

The results of this section provide definite evidence of a tailing configuration as 
the sphere passes across the plane of the undisturbed interface. The dynamics of the 
layer of fluid immediately adjacent to the sphere appears to be dominated by viscous 
forces, with gravitational forces also playing a role, but to be only weakly influenced 
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FIGURE 15. Drag ratio va. sphere position for A = 1 : (a)  Cu = 1, Cg = 0.1 ; (b )  Cu = 0.1, Cg = 1 ; 
(c) cu = cg = 0.1. 

by interfacial tension forces. The dynamics of the tail, on the other hand, appear to 
be more strongly influenced by interfacial tension forces, these tending to pinch off 
the tail as the system is eventually driven towards a second minimum free energy 
configuration in which the sphere is surrounded by a thin fluid layer of constant 
thickness and the interface reverts to a flat, undeformed configuration. In  the next 
two sections we explore the effects of motion under the action of a constant force, 
rather than motion at constant velocity as in this section, and also consider the 
influence of the initial configuration for values 1, < 3. 

5. Results for motion from a large distance due to a constant body force 
on the sphere 

In this section, we describe our results for the case of motion under the action of 
a constant external body force. Our goals are twofold. First, we wish to determine 
whether the conclusions of the preceding section, relating to the roles of A, C a  and 
Cg in controlling the shape of the interface, carry over from the constant-velocity 
to the constant-force problem. Also, we are concerned with the conditions for the 
establishment of the tailing and film-drainage configurations. Unlike the constant 
velocity situation discussed in the previous section, where a tail will necessarily 
develop provided a large enough force is exerted on the sphere, in the constant-force 
case, either a tailing mode or film-drainage behaviour might result. The constant-force 
problem is fundamentally different from the earlier case in that here the velocity 
decreases as the sphere approaches the interface, hence Ca and Cg decrease effectively 
as well. It is possible that the particle force is not great enough at these lower 
velocities to carry it across the plane z = 0 and form a tail, with the result that film 
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draining is the exhibited mode of breakthrough. Finally, we wish to compare the 
results of our numerical solutions against those of earlier theories and experiments. 
To accomplish the latter goal, two calculations were carried out corresponding to 
published experimental runs. One was for a case which experimentally exhibited film 
drainage, the other where a tail configuration was reported. 

Before proceeding to discuss numerical results, however, we note that it can be 
shown without use of a numerical procedure that only one mode of deformation is 
possible for a certain subclass of the constant-force problem. In particular, in cases 
where the force responsible for sphere motion is buoyancy-induced, film-drainage is 
the only possible configuration when the particle density is intermediate between the 
densities of the two fluids. This result is demonstrated easily by showing that any 
configuration in which the particle passes beyond the plane of the initial flat interface, 
is inconsistent with a macroscopic ‘equilibrium ’ force balance when the sphere 
density is between that of the two fluids. The details of this calculation are shown 
in the Appendix. The condition of an intermediate sphere density is satisfied 
whenever Cg < f. The fact that no inconsistency arises for sphere densities which are 
not intermediate to the two fluids (i.e. for Cg > f) does not, of course, prove that a 
tailing configuration will actually arise in a dynamical calculation (or experiment). 
It shows only that such a configuration is possible. 

We consider one case for which the macroscopic balance predicts film drainage, i.e. 
Cg < f. This is for the set of parameters A = 0.022, Ca = 0.464, Cg = 0.089. These 
parameters correspond to an aluminium sphere falling through golden syrup toward 
liquid paraffin, the system used in Hartland’s (1969) experiments. The associated 
Reynolds number for this system is 0.003. A feature predicted in the film-drainage 
theories for this case is the pinch point described by Hartland (1969) and given a 
physical explanation by Jones & Wilson (1978). Calculated interface shapes for the 
sphere starting at lo = 3.0 are shown in figure 16. The mode of interface deformation 
is clearly film drainage. Figure 17 is an enlargement of the film region showing the 
pinching of the interface as predicted by Jones & Wilson (1978). Also shown are the 
results from Hartland’s (1969) experiments. Although the calculated shapes are 
qualitatively close to the measured interface positions, the quantitative agreement 
is not particularly good. We feel that this is most likely a manifestation of different 
initial configurations in the two cases. The initial condition for the numerical work 
has already been discussed. The sphere is placed with its centre 3 radii away from 
a flat interface and released subject to the condition of a constant applied force. 
Hartland is less clear about his initial conditions. In fact, the only evidence given 
is the interface shape for t = 1.89. For the case 1, = 3, calculated numerically, it takes 
a time of 5.50 s to reach a film thickness at  the centre-line corresponding to this 
measured interface shape. From this, we conclude that the experimental run by 
Hartland started with the sphere closer to the interface than I ,  = 3, but we cannot 
be sure exactly where the experiment did start. 

We now consider the more interesting cases (Cg > i) where a tailing configuration 
is possible and address the question of when tails actually occur. For the case of the 
sphere moving with constant velocity, U ,  the parameters Ca and Cg are defined in 
terms of U .  In the present situation, however, the velocity of the sphere does not 
have a fixed value but changes with position. An appropriate characteristic velocity 
scale for dimensional analysis (cf. (2)-(8)) is the Stokes velocity for motion of the 
sphere under the same force in an unbounded fluid (i.e. sufficiently far from the 
interface). Values of Ca and Cg defined in terms of this velocity are then used to 
compare results with the constant-velocity case for the same values of Ca and Cg. 



Motion of a particle normal to a deformable interface 55 

t r = 2  

F - -“i 2.0 

0 1.5 3.0 4.5 6.0 7.5 

FIGURE 16. Interface shape as a function of sphere position for h = 0.022, Ca = 0.465, 
Cg = 0.089, I,, = 3. Constant-force case. Interface shown for t = 0, 2, 3, 4, 6, 8, 9.5. 

R 

However, the actual instantaneous sphere velocity varies with position, as already 
noted, and is generally less than the Stokes velocity. Thus, the values of Ca and Cg 
defined in terms of the Stokes velocity overestimate the magnitude of viscous forces 
relative to capillary or gravitational (buoyancy) forces for any given instantaneous 
position of the sphere. For some purposes, it is therefore useful to consider ‘effective ’ 
values of Ca and Cg (denoted as CuefP and Cgeff) based on the instantaneous sphere 
velocity. The differences between characteristic values of Ca and Cg, and their 
effective or instantaneous values, Caeff and Cgeff, are important in understanding the 
difference between motion at a constant velocity and motion with a constant applied 
force. Figure 18 shows the interface shape for A = 1, Ca = Cg = 1 and 1, = 3 with a 
constant applied force on the sphere, while the instantaneous sphere velocity is 
plotted in figure 19. It is evident that the sphere velocity is strongly decreased in 
the presence of the interface when moving under the action of a constant force. Thus, 
the deformation at  any point in time is less than in the corresponding constant 
velocity case, as may be seen by comparing figures 5 and 18. 

However, there is no question that the deformation process (and thus, presumably, 
time to breakthrough) will be much longer for a given value of Ca and Cg in the 
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FIQURE 17. Detail of film region for h = 0.022, Ca = 0.465, Cg = 0.089; I ,  = 3: -, numerical 
calculations; - -  - - -, experimental results from Hartland (1969). 

constant-force problem. What is in doubt is the mode of deformation and ultimately 
breakthrough. For the purpose of answering this question and providing a more 
meaningful comparison of the constant-force and constant-velocity cases, interface 
shapes should be compared at the same positions of the sphere relative to the plane 
of the undeformed interface rather than a t  equal increments of time. Furthermore, 
based on the reduction in sphere velocity shown in figure 19, the instantaneous or 
effective values of Ca and Cg in the case A = 1, Cu = 1, Cg = 1 range between initial 
values of Ca = CuefP, Cg = Cgeff = 1, and minimum values (?aeff = CgePf = 0.09 a t  
t x 15. Thus, one might expect to  find interface shapes which lie somewhere between 
the constant-velocity cases A = 1, Ca = 1, Cg = 1 and h = 1, Cu = lO- l ,  Cg = lo-' 
that were shown in figures 5 and 9, respectively. Comparison of figures 5 ,  9 and 18 
shows that this is, indeed, the case. Compared with the interface shape a t  the same 
sphere position for the constant velocity problem with Ca = Cg = 1, it is evident that 
the film is initially thinner in the constant-force solution, but that  there is a stronger 
tendency later in the deformation process for the short tail behind the sphere to  pinch 
off to  produce a film of constant thickness over the majority of the sphere surface. 
Although this latter behaviour is strongly reminiscent of the constant-velocity case 
with Cu = Cg = 0.1 (figure 9), the film thickness is considerably larger in the 
constant-force problem reflecting the relatively small forces resisting deformation a t  
earlier times in the process when CuePf and CgePf are larger than 0.1. Although 
calculations for t > 25 were not carried out, i t  appears very likely on the basis of 
comparison with the constant-velocity problem that the mode of breakthrough will 
be pinching off of the fluid tail behind the sphere. 

Additional evidence for the existence of tailing modes of interface deformation in 
the case of sphere motion with a constant applied force will be presented shortly. It 
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FIGURE 18. Interface shape aa a function of sphere position for A = I ,  Ca = 1, Cg = 1 : -, shapes 
for sphere initially at lo = 3; ---, 5; -----, 1, = 10. Constant-force problem. Interface shown for 
t = 0, 2, 4, 6, 8, 11 ,  15, 17, 19, 21, 23, 25. 

is apparent, however, that the rapid decrease in Cue,, and CgeIf which occurs as the 
sphere slows down does lead to much shorter tails for given values of Cu and Cg than 
occurred in the constant-velocity problem. The possibility exists that a given set of 
parameters which gave a high drag ratio and a broad tail behind the sphere for 
constant velocity could yield a film-drainage configuration in the constant-force case 
even for Cg > t. 

Figure 20 shows the interface configuration for the constant-force problem with 
Ca = Cg = 1, A = 10, a case which did give a broad tailing configuration in the 
constant-velocity case. The sphere velocity is plotted against time in figure 21. 
Comparing figures 20 and 7 one sees that the broad tail of the constant-velocity plot 
has become a film-drainage configuration in the constant-force problem. At t = 33, 
the sphere velocity has dropped to 0.04 of the corresponding Stokes velocity, and thus 
Cue,, = Cg,, = 0.04. With such large restoring forces relative to the viscous forces, 
further deformation is difficult so one expects the remaining fluid to merely drain 
away between the sphere and the interface. 

Maru et ul. (1971) have previously attempted to develop an u priori criteria for 
existence of a tailing configuration. The existence of serious shortcomings in this work 
has been mentioned in an earlier section. Here, comparison of present results for the 
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FIQURE 19. Velocity aa a function of sphere position for h = 1, Ca = 1, Cg = 1: -, I ,  = 3; 
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various values of h points to one of the problems with their work and that of all others 
who use a quasi-static force balance to calculate sphere and interface motion. By 
failing to consider the shear stress on the surface of the interface, these authors do 
not have any way of judging the timescale of sphere motion relative to drainage of 
the film, and so cannot differentiate between systems with different viscosity ratios. 
In effect, they assume a film-drainage configuration as the initial condition and 
neglect the interface beyond the point where it begins to break away from the sphere. 
Figure 18 shows that the film region is established early and remains essentially the 
same after t = 8 for 1, = 3 ;  whereas, the interface in the break-away region continues 
to deform creating a tail configuration. For the large-viscosity-ratio case and the same 
values of Ca and Cg, the film again is essentially formed at t = 8 but the interface 
past r = 1.5 shows much less deformation. As a consequence of their analysis, Maru 
et al. (1971) predict that film drainage will never be observed for Ca = Cg = 1, while 
our results give strong indications to the contrary depending upon the viscosity 
ratio, A. 

The results of the constant-force cases described above demonstrate how the 
qualitative nature of the interface deformation changes relative to the constant 
velocity case. In both of the constant-force cases examined so far for Cg > g, the 
dramatic decrease in sphere velocity (and thus of Ca and Cg) results in the absence 
of long slender tails behind the sphere as were found in the case of constant velocity. 
To determine whether such a configuration is possible or if the deceleration of the 
sphere will always prohibit the formation of a long tail in creeping flow, a set of 
calculations was run duplicating an experiment of Maru et al. which produced a long 
tail behind the sphere, albeit at finite Reynolds number. Using a 3 mm, glass sphere 
falling through cyclohexanol with a 62.5% glycerinewater solution as the fluid 1 
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FIGURE 20. Interface shapes aa a function of sphere position for h = 10, Ca = 1, Cg = 1 : -, 2, = 3; 
_-_ , 1, = 5;  ----, 1, = 10. Constant-force problem. Interface shown fort = 0, 2, 4, 6, 8, 11, 13, 15, 
21, 24, 27, 30, 33. 

phase, Maru et al. observed a tail which reached a length of 120 sphere radii before 
exhibiting significant disturbances on its surface. The parameters of this system are 
h = 0.434, Ca = 3.83, Cg = 1.97; the Reynolds number is 15.19. With such a large 
Reynolds number, inertial effects are certainly not negligible, and it is by no means 
obvious that a long slender tail should be expected in the creeping-flow regime. 
However, figure 22 shows the calculated interface shapes versus position for this case 
and a long thin tail has very definitely developed. Figure 23 shows how the sphere 
velocity changes with position. Note that a minimum is observed at I = -2.0 (i.e. 
at t = 7.5), which is related to the maximum found in the drag coefficient for motion 
for constant velocity. As the sphere becomes more encapsulated under the effect of 
surface tension, the velocity increases, eventually going above 1 .OO, the value in an 
unbounded region of fluid 2. The sphere would have a velocity of 2.304 in an 
unbounded domain of fluid 1,  but this velocity will never be achieved until 
breakthrough as the surrounding fluid 2 increases the density of the composite body 
above that of the sphere alone. The results of this calculation confirm the existence 
of a long slender tail for the case of a sphere moving under a constant buoyancy force. 
The comparison with published results can be of only a qualitative nature as no 

3 FLM 109 
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quantitative data on the interface shapes or sphere velocity were given by Maru 
et al. (1971). 

As a further demonstration of the existence of tails in the constant-force problem, 
results for the case h = 1, Ca = 1, Cg = 10 are presented in figure 24. This case again 
shows the definitive formation of a relatively long, slender tail. The velocity as a 
function of position is included in figure 23. At the minimum point, the velocity is 
approximately 0.4 times the Stokes velocity. Thus, Caeff and Cg,,, span the ranges 
0.2-1 and 2-10, respectively. The nearest constant-velocity would thus appear to  be 
A = 1, Ca = Cg = 1 and A = 1, Ca = l O - l ,  Cg = 1. Indeed, the interface shows many 
characteristics of the constant-velocity results for the latter case. The broad 
deformation and surface-tension-driven constriction are both features which reappear 
in the constant-force result. The rapid constriction of the tail which occurred in the 
constant-velocity problem, however, is not present here. As the sphere continues past 
I = - 3 and begins to accelerate, the interface behaves more .like the h = 1, Ca = 1, 
Cg = 1 constant-velocity case. For this set of parameters, the surface-tension-driven 
constriction is decreased and this is reflected by the deceleration of pinching in the 
tail after t = 13. Also, the increased viscous force is able to support the fluid in the 
tail. 

The most interesting comparison, however, is with the results shown earlier for 
motion with a constant force at h = 1,  Ca = Cg = 1. The increase in Cg from 1 to 10 
means that the effect of body forces on interface deformation should be relatively 
unimportant compared to capillary forces in the case h = 1, Ca = 1, Cg = 10, and 
the comparison with h = 1, Ca = Cg = 1 further allows us to observe the way in which 
interfacial tension and density differences influence deformation. Comparing the 
results of figures 18 and 24, the chief difference at early times when the sphere velocity 
is not too strongly influenced by the interface (so that  the Cue,, values are similar) 
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FIGURE 22. Interface shape &a a function of sphere position for A = 0.434, Ca = 3.831, 
Cg = 1.972, 1, = 3. Constant-force case. 

is that the deformation produced is broader in the case Cg = 10. This is a consequence 
of the fact that the smaller density difference in this case yields less resistance to the 
tendency of interfacial tension to produce a broad, flat deformation, i.e. the system, 
all else being equal can support a larger volume of fluid 2 across the (z = 0)-plane 
when Cg is increased. 

As the sphere continues to move, an increasing volume of the heavy fluid is carried 
across the ( z  = 0)-plane until finally, the force applied from the sphere can no longer 
support such a large volume of fluid, drainage accelerates and a tail configuration 
results. Obviously, for larger Cg values, a larger volume of fluid can be supported and 
this is clearly reflected when comparing results from figures 18 and 24, though 
comparison is difficult owing, in part, to the fact that the changes in sphere velocity 
are different in the two cases. As was true for the constant-velocity systems, once 
the tail configuration appears, the role of interfacial tension changes from one of 
tending to preserve the flat interface to one of minimizing the surface area in the tail 
region by producing a spherical shell around the sphere with the tail pinched off. This 
is demonstrated dramatically in the h = 1, Ca = 1, Cg = 1 results where the 
significantly lower value of Caefl from the case of figure 24 (0.1 us. 0.4) causes a much 
more rapid pinching of the fluid in the tail region. 

3-2 
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FIGURE 23. Velocity as a function of sphere position for constant-force cases. 

6. Effect of sphere starting position 
Previously, we have discussed the effect of starting positions greater than or equal 

to three sphere radii from the undeformed interface. These results were presented to  
show that if one is interested in the behaviour of the sphereinterface system some 
time after the sphere begins to approach the interface, results for all calculations 
begun at  a distance greater than lo = 3 will appear identical. Here, we discuss another 
aspect of the initial-starting-point question : the effect of starting the sphere very close 
to the flat interface. Two groups of calculations have been carried out. In the first, 
a series of cases were run in which the sphere centre was initially 1.2 radii from a 
flat interface. In the second, initial starting positions were chosen so that the 
minimum initial gap between the sphere and a flat interface was comparable to the 
film thickness at  large times when the initial position was 1, 2 3. These second 
calculations were done only for sets of parameters which displayed tailing with a fairly 
stable film thickness in front of the sphere when started with 1, = 3.0. This type of 
calculation more closely duplicates the experiments described in § 1 where a drop was 
brought close to an interface and then released, and may reveal caaes where the 
starting position causes a change from the tailing configuration to one of film drainage 
(as was observed in all of the experiments other than Maru et al. 1971). 

6.1. Initial starting position, lo = 1.2 
Calculations with starting positions I ,  = 1.2 were performed for several cases. These 
included for constant velocity h = 1, Ca = Cg = 1.10, a tailing case ; and the constant 
force cases h = 1 ,  Ca = Cg = 0.10, and h = 0.022, Ca = 0.465, Cg = 0.089 which 
represent a tailing and a film-drainage configuration, respectively. In all of these 
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FIGURE 24. Interface shape as a function of sphere position for A = 1, Ca = 1, Cg = 10,1, = 3. 
Constant-force case. 

cases, the calculated values for the velocities, stress and position of the interface at 
some value of 1 came to within 1 yo of the values calculated when the initial position 
was 3.0. When this occurred, the calculations were stopped. The quasi-steady 
assumption made in deriving (13)-( 16) ensures that for a given set of parameters, only 
the current position of the sphere and interface influence the future behaviour of the 
system; the prior history of the calculation will thus influence future results only 
through its effect on the current interface shape and sphere position. Therefore, when 
the positions of the sphere and interface in the I ,  = 1.2 calculation are the same as 
in the 1, = 3.0 case, all future results will be identical as well. Figure 25 shows the 
1, = 1.2 results for A = 1, Ca = Cg = 0.10 with a constant sphere velocity, and this 
may be compared to figure 9 which gives results for the same A,  Ca and Cg values, 
but 1, = 3.0. The specific time it takes for the 1, = 1.2 and 1, = 3.0 interface shapes 
to become equal depends on the dimensionless parameters of the system; however, 
these results demonstrate that no change in the mechanism of breakthrough occurs 
when an initial gap thickness of 0.2 is used rather than 2.0 corresponding to the 
1, = 3.0 calculations. 
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FIGURE 25. Interface shape as a function of sphere position for h = 1, Ca = Cg = 0.10,1, = 1.2. 
Constant-velocity case. 

6.2. Initial position, lo,  corresponding to the thickness of the film at large deformation 
This calculation differs significantly from all those discussed previously. In  all the 
cases presented up to this point, film and tail formation first occurred simultaneously, 
then film drainage took place as the tail lengthened and narrowed. The present 
situation is one in which a thin film is present from the onset of the calculation, 
whereas the tail must still be formed from the flat interface. The implication of this 
in the constant-velocity problem is that the sphere may move across the interface 
before a tail has time to form. In the case of constant applied force, the probability 
of this happening is enhanced by the fact that the small gap between the sphere and 
interface will produce high velocity gradients right from the beginning of the 
calculation and so make a large contribution to the drag on the sphere. This results 
in a lower initial sphere velocity and a corresponding decrease in the effective values 
of Ca and Cg. Small values for Caefl and Cgeff tend to inhibit deformation of the flat 
interface and result in film drainage for breakthrough. 

The constant-velocity case chosen was h = 1.0, Ca = Cg = 0.10. For lo = 3.0, this 
case displays a short, pinched tail and narrow film surrounding the sphere. The fact 
that the tail is short suggests that tail formation is likely to be suppressed in going 
to the close starting position. The thickness of the film after formation of the tail 
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FIGURE 26. Interface shape as a function of sphere position for A = 1 ,  Ca = Cg = 0.10, 
I ,  = 1.05. Constant-velocity case. 

remains relatively constant at  0.05 and this was the separation between the sphere 
and interface at the start of the calculation, i.e. I, = 1.05. Comparing figures 9, 25 
and 26 for 1, = 3, 1.2 and 1.05, respectively, it can be seen that the interface shapes 
are fairly similar; however, in the 1, = 1.05 case, calculations would simply not 
converge much past 1 = 0, i.e. the sphere straddling the interface, in spite of the fact 
that the convergence had been achieved in other cases with even thinner films 
between the sphere and interface. It is possible that no solution exists beyond the 
point of convergence for this case with 1, = 1.05. In  this case, the change in starting 
position of the sphere would have caused a change in the mode of breakthrough for 
A = 1, Ca = Cg = 0.1. However, the solution technique utilized here does not allow 
a definitive case that the lack of convergence is not simply a failure of the numerics. 

For a constant-force problem, the case of h = 1, Ca = I ,  Cg = 10 was run with 
1, = 1-10 corresponding to the film thickness seen in the I, = 3.0 result. The results 
of this calculation are shown in figure 27. One sees that the two cases agree in the 
film region but the results for 1, = 1.1 show a narrower tail than for the I ,  = 3.0 result. 
Also, although a tail is formed, the total deformation of the interface in the I, = 1.10 
case is much less than for the large starting distance. That is, the interface for I, = 1.10 
lies below that for 1, = 3.0 at equal sphere positions. The result of starting from 
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1, = 1.10 is that tailing is enhanced in the constant-force case and so rather than 
changing the mode of breakthrough, the close starting positions hasten breakthrough 
in the existing mode. 

The effect of starting the sphere close to the interface may be summarized by stating 
that the initial conditions influence the deformation for some time after the 
calculation is begun. For the case when 1, = 1.2, the departure of the calculation from 
the 1, = 3.0 result diminishes with time until the results are identical. For a starting 
position corresponding to the film thickness after a tail has been established, the 
departure from the 1, = 3.0 result may be significant enough to cause a change in the 
mode of breakthrough for the constant-velocity case A = 1, Ca = Cg = 0.10, and does 
cause a departure in the interface shape for the constant-force case h = 1, Ca = 1, 
Ca = 10 for a long time after the calculation is started. 

7. Conclusions 
We have used the boundary -integral to study numerically the creeping axisymmetric 

motion of a sphere normal to an initially flat fluid-fluid interface under the constraint 
that the sphere moves either with a constant velocity or under the action of a 
constant-buoyancy force. 
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Our calculations show the existence of two distinct modes of interface deformation 
for the constant-force problem which we have designated as film draining and tailing. 
The parameters controlling which mode will occur are Ca and Cg, reflecting the 
relative magnitudes of the interfacial tension and the density difference between the 
two fluid phases; the forces associated with these two properties tend to maintain 
the interface in its initially flat configuration. Thus, when these restoring forces 
are large relative to the viscous forces generated by the motion of the sphere, i.e. 
Ca, Cg 6 1 ,  film-drainage behaviour occurs. When the inverse is true, i.e. Ca, Cg 
approximately order 0.1 or greater, a tailing configuration appears. A further 
statement about the possibility of tailing for the constant-buoyancy-force case can 
be made: no tails can occur when the density of the sphere is intermediate to those 
of the two fluids. 

A significant difference in the behaviour of the constant-force and constant-velocity 
problems is the shortening of the tails in the former case for moderate Ca and Cg. 
This follows from the decrease of the instantaneous effective deforming forces as the 
sphere approaches the interface. As the sphere comes closer to the interface, its 
velocity decreases, thereby increasing the strength of interfacial tension and density 
body forces due to the density difference relative to viscous forces. The increased 
relative strength of the restoring forces makes further deformation more difficult, with 
the final outcome being the suppressed extension of the tail and more film drainage 
occurring between the sphere and interface. The viscosity ratio acts not to restore 
the interface to its initial flat shape, but to control the rate at which fluid drains from 
the space between the sphere and interface. 

Comparison of our results with published experimental data showed fair agreement. 
The differences which do exist are believed to be a consequence of the differences in 
the initial conditions used, but as the experimental descriptions did not state these 
initial conditions, this area cannot be explored at  present. Calculations using small 
interface-sphere separations showed that changes in initial conditions could signifi- 
cantly influence results, especially at early times. 

Appendix: Macroscopic force balance for a sphere several radii beyond an 
initially undeformed interface 

To prove that a sphere moving under a constant body force cannot cross the plane 
of the initially undeformed interface when the body force is gravity alone, a 
macroscopic force balance is carried out for a sphere which is assumed to have crossed 
the plane z = 0, carrying a body of fluid 2 with it in the form of a film plus tail. We 
shall see that a contradiction is reached in this balance if the density of the sphere 
is between that of the two fluids, thus showing that a configuration of the tailing type 
is impossible for this case. 

We begin by stating the force balance for the sphere alone 

Fext-psg5-J (Tz*n)*ka&p+pzgK = 0, (A 1) 
SP 

where pz is the density of the fluid in which the sphere is immersed. 

T, 

n 
k 
S ,  
Fext 

is the dynamic stress tensor in fluid 2 (i.e. the total stress minus hydrostatic 
pressure contributions) ; 
is the outer unit normal to the sphere; 
is a unit normal in the vertical ( z )  direction; 
is the volume of the sphere, $a3 ; 
is any external force on the sphere in addition to gravity. 
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Hydrodynamic fs drag 

Weight of fluid 
in column and 
film 

FIQURE 28. Schematic sketch of control volume for an overall force balance on the fluid in the 
tail plus film. 

A similar balance on the fluid region (control volume) marked inside the dashed lines 
of figure 28 gives 

P1 9 v, -Pz 9 v, + j (T,.n).k asp-p, 9 v, + s,, (T,*n)*k as, = 0, (A 2) 
S P  

where 

V, 

V, 

S, 

S* 

If we neglect the contribution due to T, at S*, and assume h = 0 so that t  

is the volume of fluid 2 in the tail plus film region inside the dashed lines of 
figure 4 ; 
is the sum of V, and K; 
is the dynamic stress tensor in fluid 1 ; 
is the portion of the surface of the control volume defined by the interface 
between fluids 1 and 2;  
is the portion of the surface of the control volume which is coincident with the 
initial plane of the interface. 

the balance (1) and (2) can be combined to  yield 

We consider the case Fext = 0 in which the only ‘ external ’ force on the sphere is due 
to buoyancy. Now, i t  is obvious that V,/Vs > 1. On the other hand 
(pz-ps) / (p2-p1)  < 1 unless ps < pl .  Hence, we conclude that the configuration 
represented by figure 28 is impossible unless ps < pl .  No such inconsistency arises if 
we apply the same force balance concepts to a film-drainage configuration with 
p1 < p2. The presence of viscosity in fluid 1 ,  A + 0, would act to  slow the drainage 
of the fluid in the tail, but could not provide a force to actually overcome gravity. 
Therefore, the conclusions from (A 3) would hold even for a viscous fluid 1 .  

t The mass flux at S* is seen to be small after calculating the change in tail volume with 
time. Furthermore, the velocity and velocity gradients in this region are also small. 
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